The (a – b)2 formula says (a – b)2 = a2 – 2ab + b2. It is used to find the square of a binomial. This a minus b whole square formula is one of the commonly used algebraic identities. This formula is also known as the formula for the square of the difference between two terms.
- നാലു വർഷം കൂടുമ്പോൾ വീണു കിട്ടുന്ന അധിക ദിവസം; അധിവര്ഷത്തിന്റെ വിശേഷങ്ങൾ
- शादियों का सीजन शुरू: वसंत पंचमी और अक्षय तृतीया पर कोई मुहूर्त नहीं, मई-जून में शुक्र अस्त के कारण नहीं बजेगी शहनाई
- England World Cup 2023 Schedule, Squad: विश्व कप 2023 में इंग्लैंड की टीम कैसी होगी और उनका पूरा कार्यक्रम जानिए
- जागो हिन्दुस्तानी !
- स्मार्टफोन यूजर्स सीख सकते हैं देश की 22 अलग-अलग भाषा, सरकार देगी टेस्ट पास करने पर सर्टिफिकेट Bhasha Sangam Mobile App: अगर आप भी अलग-अलग राज्यों की भाषा सीखना चाहते हैं तो सरकारी की तरफ से जारी किए गए इस ऐप से सीख सकते हैं. इसमें 22 भाषा शामिल हैं. एप में देखें
The (a – b)2 formula is used to factorize some special types of trinomials. Let us learn more about a minus b Whole Square along with solved examples in the following section.
Bạn đang xem: (a – b)^2 Formula
What is (a – b)^2 Formula?
The (a – b)2 formula is also widely known as the square of the difference between the two terms. It says (a – b)2 = a2 – 2ab + b2. This formula is sometimes used to factorize the binomial. To find the formula of (a – b)2, we will just multiply (a – b) (a – b).
(a – b)2 = (a – b)(a – b)
= a2 – ab – ba + b2
= a2 – 2ab + b2
Therefore, (a – b)2 formula is:
Xem thêm : Hectare To Bigha- Conversion and Calculations in Different States
(a – b)2 = a2 – 2ab + b2
☛Also Check: (a + b)^2 Formula
Proof of A minus B Whole Square Formula
Let us consider (a – b)2 as the area of a square with length (a – b). In the above figure, the biggest square is shown with area a2.
To prove that (a – b)2 = a2 – 2ab + b2, consider reducing the length of all sides by factor b, and it forms a new square of side length a – b. In the figure above, (a – b)2 is shown by the blue area. Now subtract the vertical and horizontal strips that have the area a × b. Removing a × b twice will also remove the overlapping square at the bottom right corner twice hence add b2. On rearranging the data we have (a − b)2 = a2 − ab − ab + b2. Hence this proves the algebraic identity (a − b)2 = a2 − 2ab + b2.
Examples on (a – b)^2 Formula
Example 1: Find the value of (x – 2y)2 by using the (a – b)2 formula.
Solution:
To find: The value of (x – 2y)2. Let us assume that a = x and b = 2y. We will substitute these values in (a – b)2 formula: (a – b)2 = a2 – 2ab + b2 (x – 2y)2 = (x)2 – 2(x)(2y) + (2y)2 = x2 – 4xy + 4y2
Answer: (x – 2y)2 = x2 – 4xy + 4y2.
Xem thêm : Wild Animals Name in Hindi & English | जंगली जानवरों का नाम
Example 2: Factorize x2 – 6xy + 9y2 by using a minus b whole square formula.
Solution:
To factorize: x2 – 6xy + 9y2. We can rearrange the given expression as: x2 – 6xy + 9y2 = (x)2 – 2 (x) (3y) + (3y)2. Using (a – b)2 formula: a2 – 2ab + b2 = (a – b)2 Substitute a = x and b = 3y in this formula: (x)2 – 2 (x) (3y) + (3y)2 = (x – 3y)2
Answer: x2 – 6xy + 9y2 = (x – 3y)2.
Example 3: Simplify the following using the (a – b)2 formula: (7x – 4y)2.
Solution:
a = 7x and b = 4y Using formula (a – b)2 = a2 – 2ab + b2 (7x – 4y)2 = (7x)2 – 2(7x)(4y) + (4y)2 = 49×2 – 56xy + 16y2.
Answer: (7x – 4y)2 = 49×2 – 56xy + 16y2.
Nguồn: https://nanocms.in
Danh mục: शिक्षा