गणित में सबसे महत्वपूर्ण चीज है- फॉर्मूला। यदि आपको गणित के सभी महत्वपूर्ण फॉर्मूला याद हैं तो आपके लिए गणित काफी सरल हो जाती हैं। विभिन्न प्रकार की प्रतियोगी परीक्षाओं जैसे SSC, UPSC, SSC CGL, JEE Mains आदि में भी छोटी कक्षाओं में उपयोग किए जाने वाले गणित के सूत्रों के ऊपर सवाल पूछे जाते हैं। इसीलिए इस ब्लॉग में आपको गणित के सूत्र के बारे में जानकारी प्रदान करेंगे और उन परीक्षाओं की दृष्टि से कौन से math formula परीक्षा के लिए महत्वपूर्ण होते हैं, इसकी भी जानकारी आपको देंगे। Ganit Ke Sutra की संपूर्ण और विस्तृत जानकारी के लिए आपको यह ब्लॉग अंत तक पढ़ना पड़ेगा।
गणित के सूत्र किसे कहते हैं?
गणित के सूत्र क्या होते हैं, यह नीचे बताया गया है-
Bạn đang xem: जानिए क्या होते हैं गणित के सूत्र?
- “गणित में प्रतीकों एवं किसी तर्क-भाषा के रचना के नियमों का प्रयोग करते हुए, बनाई गई समीकरण को सूत्र (फार्मूला) कहते हैं।”
- विज्ञान में किसी सूचना या विभिन्न राशियों के बीच गणितीय सम्बन्ध को छोटे रूप में दर्शाने को सूत्र कहते हैं।
- रासायनिक सूत्र भी किसी तत्व या यौगिक को प्रतीकात्मक रूप से संक्षेप में लिखने का तरीका मात्र है।
- गणित के प्रश्नों को हल करने के लिए गणित के सूत्र बहुत महत्वपूर्ण होते हैं इसलिए हमारे ब्लॉग में हमने सभी math formula को शामिल किया है।
उदाहरण के लिये किसी वृत्त के क्षेत्रफल का सूत्र निम्नलिखित है- πr2
कक्षा 6 के लिए फार्मूला टेबल
कक्षा 6 के लिए फार्मूला टेबल नीचे दी गई है:
सम्पूर्ण गणित के सूत्र PDF
गणित के सूत्र: गणित के सूत्र कितने प्रकार के होते हैं?
गणित के सूत्र विभिन्न प्रकार के होते हैं, जो छोटी कक्षाओं से लेकर बड़ी कक्षाओं तक इंसानी जीवन में एक खास भूमिका निभाते हैं। इन्हीं math formula के आधार पर आप ज़िंदगी की गणना करने में भी सक्षम हो पाते हैं। इस ब्लॉग के माध्यम से आप सभी कक्षाओं से संबंधित महत्वपूर्ण math formula के बारे में जान सकेंगे, जो कि निम्नलिखित है –
बीजगणित (अलजेब्रा) के सूत्र
- (a+b)² = a²+2ab+b²
- (a-b)² = a²-2ab+b²
- (a-b)² = (a+b)²-4ab
- (a+b)² + (a-b)² = 2(a²+b²)
- (a+b)² – (a-b)² = 4ab(a+b)³ = a³+3a²b+3ab²+b³
- (a+b)² – (a-b)² = a³+b³+3ab(a+b)
- (a-b)³ = a³-3a²b+3ab²-b³
- (a-b)³ = a³+b³+3ab(a+b)
- (a+b)³ + (a-b)³ = 2(a³+3ab²)
- (a+b)³ + (a-b)³ = 2a(a²+3b²)
- (a+b)³ – (a-b)³ = 3a²b+2b³
- (a+b)³ – (a-b)³ = 2b(3a²+b²)
- a²-b² = (a-b)(a+b)
- a³+b³ = (a+b)(a²-ab+b²)
- a³-b³ = (a-b)(a²+ab+b²)
- a³-b³ = (a-b)³ + 3ab(a-b)
- (a+b+c)² = a²+b²+c²+2(ab+bc+ca)
- (a+b+c)³ = a³+b³+c³+3(a+b)(b+c)(c+a)
- a³+b³+c³ = (a+b+c)³ – 3(a+b)(b+c)(c+a)
- (a+b+c+d)² = a²+b²+c²+d²+2(ab+ac+ad+bc+bd+cd)
- a³+b³+c³-3abc = (a+b+c)(a²+b²+c²-ab-bc-ca)
- x²+y²+z²-xy-yz-zx = ½[(x-y)²+(y-z)²+(z+x)²]
- a³+b³+c³-3abc = ½(a+b+c) [(a-b)²+(b-c)²+(c-a)²]
- a²+b²+c²-ab-bc-ca = ½[(a-b)²+(b-c)²+(c-a)²]
- a(b-c)+b(c-a)+c(a-b)=0
- ab(a-b)+bc(b-c)+ca(c-a) = -(a-b)(b-c)(c-a)
- a²(b²-c²)-b²(c²-a²)+c²(a²-b²) = (a-b)(b-c)(c-a)
- a+b = (a³+b³)/(a²+ab+b²)
- a – b = (a³-b³)/(a²+ab+b²)
- a+b+c = (a³+b³+c³-3abc) / (a²+b²+c²-ab-bc-ca)
- (a+1/a)² = a²+1/a²+2
- (a²+1/a²) = (a+1/a)²-2
- (a-1/a)² = a²+1/a²-22
- (a²+1/a²) = (a-1/a)²+2
- (a³+1/a³) = (a+1/a)³-3(a+1/a)
जाने IAS कैसे बने
क्षेत्रमिति (मेंसुरेशन) के सभी फार्मूला
- त्रिभुज का क्षेत्रफल – 1/2 × आधार × उचाई
- त्रिभुज का परिमाप – त्रिभुज के तीनों भुजाओं का योग।
- त्रिभुज का क्षेत्रफल – √s(s-a)(s-b)(s-c)
त्रिभुज के प्रकार एवं उनके क्षेत्रफल
समद्विबाहु त्रिभुज: वह त्रिभुज जिसकी दो भुजाएँ बराबर हो समद्विबाहु त्रिभुज (Isosceles Triangle) कहलाता है। समद्विबाहु त्रिभुज के सूत्र नीचे दिए गए हैं-
- समद्विबाहु त्रिभुज का क्षेत्रफल, A = a / 4 b √ (4b² – a²)
- समद्विबाहु त्रिभुज का शीर्षलम्ब = a / 4 b √ (4b² – a²)
- परिमाप, P = 2a + b
विषमबाहु त्रिभुज (स्केलीन ट्रायंगल)
विषमबाहु त्रिभुज एक ऐसा त्रिभुज जिसकी तीनों भुजाएं असमान लंबाई की होती हैं।
विषमबाहु त्रिभुज के सूत्र
- विषमबहु त्रिभुज का क्षेत्रफल, A =√ [ s(s – a)(s – b)(s – c) ]
- दुसरें रूप में, A = ½ × आधार × ऊँचाई
- अर्धपरिधि P = ½ ( a + b + c )
समकोण त्रिभुज (राइट एंगल ट्रायंगल)
वह त्रिभुज जिसके तीनों भुजाएं समान होती हैं और प्रत्येक कोण 60° का होता है।
समकोण त्रिभुज का सूत्र
- समकोण त्रिभुज का क्षेत्रफल, A = ½ × आधार × ऊँचाई
- समकोण समद्विबाहु त्रिभुज का परिमाप = (2 + √2) × भुजा
- समकोण समद्विबाहु त्रिभुज का कर्ण = (√2) × भुजा
- समकोण समद्विबाहु त्रिभुज का क्षेत्रफल = ½ × भुजा2
समबाहु त्रिभुज (इक्विलैटरल ट्रायंगल)
समबाहु त्रिभुज बहुत त्रिभुज होता है जिसकी सभी भुजाएं बराबर होती है|
समबाहु त्रिभुज का सूत्र
- समबाहु त्रिभुजा का क्षेत्रफल = (√3)/4 × भुजा2
- समबाहु त्रिभुज का शीर्षलम्ब = (√3)/4 × भुजा
- परिमाप = 3 × भुजा
आयत : आयतवह चतुर्भुज होता है जिसकी आमने-सामने की भुजाएं समान हो तथा प्रत्येक कोण समकोण (90º) के साथ विकर्ण भी समान होते हैं।
- आयत का क्षेत्रफल – लम्बाई × चौड़ाई
- आयत का परिमाप – 2 × ( लम्बाई + चौड़ाई )
- आयत का विकर्ण- √( लंबाई 2+ चौडाई 2 )
Xem thêm : Important Days in July 2024: National and International Special Dates List
वर्ग: उस चतुर्भुज को वर्ग कहते हैं, जिसकी सभी भुजाएं समान व प्रत्येक कोण समकोण(90°) है।
- वर्ग का क्षेत्रफल – भुजा × भुजा (a2)
- वर्ग का परिमाप – 4 × भुजा (4a)
- वर्ग का विकर्ण – भुजा × √2
- भुजा- √ क्षेत्रफल
- वर्ग का क्षेत्रफल – ½ × विकर्णों का गुणनफल
समलम्ब चतुर्भुज: जिस चतुर्भुज की सम्मुख भुजाओं का केवल एक युग्म समान्तर हो, उसे समलम्ब चतुर्भुज कहते है|
समलम्ब चतुर्भुज (ट्रापेज़ोइड फार्मूला) का सूत्र
- समलम्ब चतुर्भुज का क्षेत्रफल= ½ (समान्तर भुजाओं का योग x ऊंचाई)
= ½ (समान्तर चतुर्भुज का क्षेत्रफल) = ½ (आधार x संगत ऊंचाई)
- परिमाप, P = a + b+ c + d
समचतुर्भुज : समचतुर्भुज एक ऐसी समतल आकृति होती है जिसकी चारों भुजाएं समान होती हैं।
सम चतुर्भुज (रोम्बस) फार्मूला
- ∠A + ∠B + ∠C + ∠D = 360°
- विषमकोण चतुर्भुज का क्षेत्रफल = ½ × दोनों विकर्णों का गुणनफल
- समचतुर्भुज की परिमाप = 4 × एक भुजा
- समचतुर्भुज में => (AC)² + (BD)² = 4a²
चक्रीय चतुर्भुज (साइक्लिक क्वाड्रीलेटरल) का फार्मूला
- ∠A + ∠C = 180°
- ∠B + ∠D = 180°
- क्षेत्रफल = √[s(s-a) (s-b) (s – c) (s – c)]
- परिमाप, S = ½ ( a + b + c + d )
बहुभुज (पोलीगोन) का फार्मूला
- n भुजा वाले चतुर्भुज का अन्तः कोणों का योग = 2(n -2) × 90°
- समबहुभुज के प्रत्येक अंतः कोण = (n – 2) / 2 × 180°
- n भुजा वाले बहुभुज के बहिष्कोणों का योग = 360°
- बहुभुज के कुछ अंतः कोणों का योग = (n – 2) × 180°
- n भुजा वाले समबहुभुज का प्रत्येक अन्तः कोण = [2(n – 2) × 90°] / n
- बहुभुज की परिमिति = n × एक भुजा
- नियमित षट्भुज का क्षेत्रफल = 6 × ¼√3 (भुजा)²
- n भुजा वाले समबहुभुज का प्रत्येक भहिष्यकोण = 360°/n
- नियमित षट्भुज का क्षेत्रफल = 3√3×½ (भुजा)²
- सम षट्भुज की भुजा = परिवृत्त की त्रिज्या
- नियमित षट्भुज की परिमति = 6 × भुजा
- n भुजा वाले नियमित बहुभुज के विकर्णो की संख्या = n(n – 3)/2
वृत्त (सर्किल) का फार्मूला
- वृत्त का क्षेत्रफल = πr²
- वृत्त का व्यास = 2r
- वृत्त की परिधि = 2πr
- वृत्त की परिधि = πd
- वृत्त की त्रिज्या = √व्रत का क्षेत्रफल/π
- वृताकार वलय का क्षेत्रफल = π (R2 – r2)
- अर्द्धवृत्त की परिधि = ( π r + 2 r )
- अर्द्धवृत्त का क्षेत्रफल = 1/2πr²
- त्रिज्याखण्ड एवं वृत्तखंड का फार्मूला
- त्रिज्याखण्ड का क्षेत्रफल = θ/360° × πr²
- चाप की लम्बाई = θ/360° × 2πr
- त्रिज्याखण्ड की परिमिति = 2r + πrθ/180°
- वृतखण्ड का क्षेत्रफल = (πθ/360° – 1/2 sinθ)r²
- वृतखण्ड की परिमिति = (L + πrθ)/180° , जहाँ L = जीवा की लम्बाई
घन (क्यूब) का फार्मूला
- घन का आयतन = भुजा × भुजा × भुजा = a3
- घन का परिमाप = 4 a²
- पार्श्वपृष्ठ का एक किनारा = √ ( पार्श्वपृष्ठ का क्षेत्रफल / 4 )
- घन का एक किनारा = 3√आयतन
- घन का एक किनारा = √ (सम्पूर्ण पृष्ठ का क्षेत्रफल / 6 )
- घन के सम्पूर्ण पृष्ठ का क्षेत्रफल = 6a²
- घन का विकर्ण = √3 × भुजा
घनाभ (क्युबॉइड) का फार्मूला
- घनाभ का आयतन = l × b × h
- घनाभ का परिमाप = 2(l + b) × h
- घनाभ के सम्पूर्ण पृष्ठ का क्षेत्रफल = 2(lb + bh + hl)
- घनाभ का विकर्ण = √(l² + b² + h²)
- घनाभ की ऊँचाई = आयतन / ( लम्बाई × चौड़ाई )
- घनाभ की चौड़ाई = आयतन / ( लम्बाई × ऊँचाई )
- कमरें के चारों दीवारों का क्षेत्रफल = 2h ( l + b )
- ढक्कनरहित टंकी का क्षेत्रफल = 2h ( l + b ) + lb
- छत या फर्श का क्षेत्रफल = लम्बाई × चौड़ाई
बेलन (सिलिंडर) का फार्मूला
- बेलन का आयतन = πr2h
- बेलन की ऊँचाई = आयतन / πr2
- लम्बवृतीय बेलन की त्रिज्या = √ ( आयतन / πh)
- खोखले बेलन में लगी धातु का आयतन = πh (R2 – r2 )
- बेलन का वक्रपृष्ठ का क्षेत्रफल = 2πrh
- बेलन का सम्पूर्ण पृष्ठ का क्षेत्रफल = 2πr ( h + r )
- लम्बवृतीय बेलन की ऊँचाई = (बेलन का सम्पूर्ण पृष्ठ का क्षेत्रफल / 2πr) – r
- लम्बवृतीय बेलन का आधार का क्षेत्रफल = πr2
शंकु (कोन) का सूत्र
- शंकु का आयतन = 1/3 πr2h
- लम्बवृतीय शंकु की तिर्यक ऊँचाई = √ ( h2 + r2 )
- शंकु की ऊँचाई = √ (l2 – r2 )
- शंकु की आधार की त्रिज्या = √ (l2 – h2 )
- शंकु के वक्र पृष्ठ का क्षेत्रफल = πrl
- लम्बवृतीय शंकु के सम्पूर्ण पृष्ठ का क्षेत्रफल = πr ( l + r )
- शंकु का आधार का क्षेत्रफल = πr2
गोला (स्फीयर) का फार्मूला
- गोले का वक्रपृष्ठ का क्षेत्रफल = 4πr2
- गोला का आयतन = 4/3 πr3
- गोलीय शेल का आयतन = 4/3 π ( R3 – r3 )
- गोलीय शेल के सम्पूर्ण पृष्ठ का क्षेत्रफल = 4/3 π(R2- r2 )
- घन ने सबसे बड़े गोले का आयतन = 1/6 a3
- घन में सबसे बड़े गोले का पृष्ठीय क्षेत्रफल = πr 2
- गोले में सबसे बड़े घन की एक भुजा = 2R / √3
- अर्द्ध गोला के वक्रपृष्ठ का क्षेत्रफल = 2 πr2
- किसी अर्द्ध गोला के सम्पूर्ण पृष्ठ का क्षेत्रफल = 3 πr2
- अर्द्ध गोला का आयतन = 2/3 πr3
प्रतिशत के सूत्र
- लाभ = विक्रय मूल्य – क्रय मूल्य
- हानि = क्रय मूल्य – विक्रय मूल्य
- लाभ % = लाभ क्रय मूल्य × 100
- हानि % = हानि क्रय मूल्य × 100
- विक्रय मूल्य = क्रय मूल्य + लाभ
- विक्रय मूल्य = क्रय मूल्य – हानि
- क्रय मूल्य = विक्रय मूल्य – लाभ
- क्रय मूल्य = विक्रय मूल्य + हानि
- लाभ = (लाभ%/( 100 + लाभ)) × विक्रय मूल्य
- हानि = (हानि%/(100-हानि)) × विक्रय मूल्य
जाने Ssc क्या है
अंक गणित के सूत्र
अंकगणित को गणित की सबसे महत्वपूर्ण शाखा माना जाता है, जिसके अंतर्गत अंकों तथा संख्याओं की गणना एक निश्चित अवस्था में व्यवस्थित करके की जाती है।
अंकगणित पर आधारित सभी फार्मूला
लगुत्तम और महत्तम फार्मूला
लघुत्तम, वह छोटी से छोटी संख्या है, जो उन संख्याओं से पूर्णतः विभाजित हो जाती हैं और महत्तम, वह बड़ी से बड़ी संख्या है , जिसमे सभी संख्याएँ पूर्णतः विभाजित हो जाती हैं।
- ल.स. = (पहली संख्या × दूसरी संख्या) ÷ HCF
- ल.स × म.स. = पहली संख्या × दूसरी संख्या
- पहली संख्या = (LCM × HCF) ÷ दूसरी संख्या
- म.स. = (पहली संख्या × दूसरी संख्या) ÷ LCM
- दूसरी संख्या = (LCM × HCF) ÷ पहली संख्या
सरलीकरण फार्मूला
गणितीय संख्याओं को साधारण भिन्न / संख्यात्मक रूप में बदलने की प्रक्रिया सरलीकरण कहलाती है इसे कई तरह से परिभाषित किया जाता है जिसमे भिन्न-भिन्न सूत्रों का उपयोग किया जाता है।
- a²- b² = (a + b) (a – b)
- (a+b)²= a²+ 2ab + b²
- (a-b)²= a²- 2ab + b²
- (a+b)² + (a-b)²= 2(a²+b²)
- (a+b)² – (a-b)²= 4ab
- (a+b)³ = a³ + b³ + 3ab(a+b)
- (a-b)³ = a³- b³- 3ab(a-b)
- a³+ b³ = (a + b) (a² – ab + b²)
- a³- b³ = (a-b) (a² + ab + b²)
वर्ग और वर्गमूल: किसी दी हुई संख्या को उसी संख्या से गुणा करने पर प्राप्त संख्या उस संख्या का वर्ग कहलाता है। वर्गमूल वह संख्या होती है, जिस संख्या का वर्ग करने पर दी हुई संख्या प्राप्त होती है। वर्गमूल को ‘√’ चिन्ह से प्रदर्शित किया जाता है।
- ab = √a × √b
- (ab)1/2 = √a . b1/2 = a1/2 b1/2
- (a-b)2 = a2 – 2ab + b2
- (a+b)2 = a2 + 2ab + b2
- √a/b = √a / √b
- √(a/b) = (a)1/2 / (b)1/2
- (a+b)2 + (a-b)2 = 2(a2 + b2)
औसत: दो या दो से अधिक सजातीय पदों का ‘औसत’ वह संख्या है जो दिए गए कुल पदों के योगफल को उन कुल पदों की संख्या से भाग देने पर प्राप्त होती है । इसे ‘मध्यमान (Mean Value)’ भी कहा जाता है ।
- औसत =सभी राशियों का योग/ राशियों की संख्या
- सभी राशियों का योग = औसत × राशियों की संख्या
Xem thêm : ‘त्र’ अक्षर पर समाप्त होने वाले शब्द
साधारण ब्याज का सूत्र
जहां,PRT
चक्रवृद्धि ब्याज (कंपाउंड इंटरेस्ट) के सूत्र
जब निश्चित समय अंतराल के बाद ब्याज की गणना करके उसे मूलधन में जोड़ा जाता है, तो वह चक्रवर्ती ब्याज कहलाता है।
Compound Interest (CI) =A-P
जहाँ
- P = मूलधन ( Principal)
- r = ब्याज की वार्षिक दर ( Rate of Interest)
- n = एक वर्ष में कुल ब्याज-चक्रों की संख्या
- t = कुल समय (Time)
- A = t समय बाद मिश्रधन (Amount)
- CI = चक्रवृद्धि ब्याज ( Compound Interest )
त्रिकोणमिति के सूत्र
Trikonmiti Formula का उपयोग करके विभिन्न प्रकार के गणितीय समस्याओं को हल किया जाता है, जिसमे त्रिभुजों के कोण, लंबाई और ऊंचाई के विभिन्न भाग और अन्य ज्यामितीय आकृतियां शामिल होती है|
त्रिकोणमिति के सामान्य फार्मूला
गणित में त्रिकोणमिति के 6 फलनों का अध्ययन विशेष रूप से किया जाता है, जो त्रिभुज के भुजाओं एवं कोणों को मापने में मदद करता है,त्रिकोणमिति के सामान्य सूत्र इस प्रकार हैं-
- sinθ = लम्ब/कर्ण = p / h
- cosθ = आधार/कर्ण = b / h
- tanθ = लम्ब/आधार = p / b
- cotθ = आधार/लम्ब = b / p
- secθ = कर्ण/आधार = h / b
- coescθ = कर्ण/लम्ब = h / p
त्रिकोणमिति अनुपातों (रेश्यो) के मध्य संबंध
- sinθ × Cosecθ = 1
- sinθ = 1 / Cosecθ
- Cosecθ = 1 / sinθ
- Cosθ × Secθ = 1
- Cosθ = 1 / Secθ
- Secθ = 1 / Cosθ
- Tanθ × Cotθ = 1
- Tanθ = 1 / Cotθ
- Cotθ = 1 / Tanθ
- Tanθ = sinθ / Cosθ
- Cotθ = Cosθ / sinθ
त्रिकोणमितीय आइडेंटिटी
sin²θ + cos²θ = 1
- sin²θ = 1 – cos²θ
- sinθ = √(1 – cos²θ)
- cos²θ = sin²θ – 1
- cosθ = √( sinθ – 1 )
1 + tan²θ = sec²θ
- tan²θ = sec²θ – 1
- tanθ = √(sec²θ – 1)
- secθ = √(1 + tan²θ)
cosec²θ = cot²θ + 1
- cosecθ = √(cot²θ + 1)
- cot²θ = cosec²θ – 1
- cot²θ = √(cosec²θ – 1)
त्रिकोणमितीय दो कोणों के योग एवं अंतर
- Sin(A+B) = Sin A . Cos B + Cos A . Sin B
- Sin(A-B) = Sin A . Cos B − Cos A . Sin B
- Cos (A+B) = Cos A . Cos B − Sin A . Sin B
- Cos ( A-B ) = Cos A . Cos B + Sin A . Sin B
- Tan ( A + B ) = (Tan A + Tan B) / ( 1 − Tan A . Tan B)
- Cot ( A + B ) = (Cot A . Cot B − 1) / (Cot B + Cot A)
- tan(A – B)= ( tan A – tan B )/ ( 1 + tan A . tan B )
- cot(A – B) = (cot A . cot B + 1) / ( cot B – cot A )
दो त्रिकोणमितीय कोणों का सूत्र
- sin( 2θ ) = 2sin( θ ) • cos( θ ) = [ 2tan θ / (1+tan2 θ )]
- cos( 2θ ) = cos2( θ ) – sin2( θ ) = [ (1- tan2 θ ) / ( 1+tan2 θ )]
- cos( 2θ ) = 2 cos 2( θ )−1 = 1-2sin2( θ )
- tan( 2θ ) = [ 2tan( θ )] / [1−tan2( θ )]
- sec ( 2θ ) = sec2 θ / (2-sec2 θ )
- Cosec ( 2θ ) = (sec θ . Cosec θ ) / 2
तीन त्रिकोणमितिय कोणों का सूत्र
- Sin 3θ = 3 sin θ – 4sin3θ
- Cos 3θ = 4cos3 θ – 3 cos θ
- Tan 3θ = [3tan θ – tan3 θ ] / [ 1 – 3tan2 θ ]
sin θ तथा cos θ का योग त्रिकोणमितिय फार्मूला
- 2sin A . sin B = cos(A – B) + cos(A + B)
- sin A . cos B = sin(A + B) + sin(A – B)
- 2Cos A . sin B = sin(A + B) – sin(A – B)
- 2Cos A . cos B = cos(A + B) + cos(A – B)
- sin C + sin D = 2sin(C+D / 2) . cos(C-D / 2)
- sin C – sin D = 2cos(C+D / 2) cos(C-D / 2)
त्रिकोणमितिय टेबल
त्रिकोणमिति में कोणों का मान निकालने की विधि एक से अधिक होता है लेकिन यहाँ सिर्फ 0°, 30°, 45°, 60° और 90° के याद करने के दृष्टिकोण से दिया गया है-
आशा है कि इस ब्लॉग से आपको गणित के सूत्र के बारे में महत्वपूर्ण जानकारी मिली होगी। मैथ्स फार्मूला से जुड़े ऐसे हीअन्य ब्लॉग्स पढ़ने के लिए हमारी वेबसाइट Leverage Edu पर बने रहिए।
Nguồn: https://nanocms.in
Danh mục: शिक्षा